

Ch 10 - 15

Net Present Value (NPV)

Cost (an outflow) is negative and often is CF_0 .

$$NPV = \frac{-CF_0}{(1+r)^0} + \frac{CF_1}{(1+r)^1} + \frac{CF_2}{(1+r)^2} + \dots + \frac{CF_n}{(1+r)^n}$$
$$= \sum_{t=1}^n \frac{CF_t}{(1+r)^t} - CF_0.$$

Note:

- the summation starts at *t*=1 in this formulation
- the NPV function in Excel uses this formulation

Using NPV method, which project(s) should be accepted?

If Projects S and L are

■ Mutually Exclusive:

accept S because NPV_S > NPV_L.

■ Independent:

accept both because NPV > 0 for both.

$$\begin{aligned} & \text{Ch } 10-47 \\ \$100 = \frac{\$159.7}{(1+\text{MIRR}_{\text{S}})^3} \\ & (1+\text{MIRR}_{\text{S}})^3 = \frac{\$159.7}{\$100} \\ & 1+\text{MIRR}_{\text{S}} = (1.597)^{1/3} \\ & \text{MIRR}_{\text{S}} = 1.16887 - 1 \\ & \text{MIRR}_{\text{S}} = 0.1689 \end{aligned}$$

Ch 10 - 53
Check:
If
$$r = 25\%$$

 $NPV = \frac{-800}{(1+0.25)^0} + \frac{5,000}{(1+0.25)^1} + \frac{-5,000}{(1+0.25)^2}$
 $= -800 + 4,000 - 3,200$
 $= 0$
If $r = 400\%$
 $NPV = \frac{-800}{(1+4)^0} + \frac{5,000}{(1+4)^1} + \frac{-5,000}{(1+4)^2}$
 $= -800 + 1,000 - 200$
 $= 0$

			Ch 10 - 58
	Project S	Project L	
CF ₀	-100,000	-100,000	
CF_1	60,000	33,500	
Ν	2	4	
i	10	10	
NPV	4,132	6,190	
$NPV_1 > NF$	۷ _S . Does it n	nean <i>L</i> is bett	er?

Project S with Replication:					
0	1	2	3	4	
Ŭ					
(100)	60	60	I	I	
		(100)	60	60	
(100)	60	(40)	60	60	
* Amounts	in 1,000's	(10)	<u> </u>		

Ch 10 - 65

<u>Reason</u>: Companies want to avoid the direct (i.e., flotation costs) and indirect costs (negative reactions of the market) of raising new external capital.

<u>Solution</u>: Incorporate these costs into its cost of capital, then accept all projects that still have a positive NPV with the higher cost of capital and raise external equity needed to finance them.

<u>Reason</u>: Companies don't have enough nonmonetary resources (managerial, marketing, or engineering staff) to implement all positive NPV projects.

Solution: Use linear programming to identify the set of NPV-maximizing projects, subject to the staffing constraints. more ...

