

				Lect	5 - 1
Exped	cted Po	rtfolio	Return	$\mu_{ m p}$	
		Esti	mated Ret	turn	
<u>Economy</u>	<u>Prob.</u>	<u>HT %</u>	Repo %	Port. %	
Recession	0.10	-22.0	28.0	-2.00	
Below avg.	0.20	-2.0	14.7	4.68	
Average	0.40	20.0	0.0	12.00	
Above avg.	0.20	35.0	-10.0	17.00	
Boom	0.10	50.0	-20.0	22.00	
$\mu_{ m p}$ =	= 0.10 (-0 0.20 (0 0.40 (0	.02) + .0468) + .12) +			
	0.20(0	.17) + 22) -	- 11 110/		
	U.1U (U	.22) =	= 11.14%.		

Lect 5 - 11

Portfolio Return in Different States

Here is how "Port. %" – the expected returns of a 60% HT, 40% Repo portfolio – are computed:

State	Portfolio Return (%)
Recession	0.6(-0.22) + 0.4(0.28) = -2.0%
Below Average	0.6(-0.20) + 0.4(0.147) = 4.68%
Average	0.6(0.20) + 0.4(0.0) = 12.0%
Above Average	0.6(0.35) + 0.4(-0.10) = 17.0%
Boom	0.6(0.50) + 0.4(-0.20) = 22.0%

Lect 5 - 13

Standard Deviation of Portfolio Return (σ_{D})

- To find the standard deviation of portfolio return, we <u>cannot</u> simply take the weighted average of $\sigma_{\rm HT}$ and $\sigma_{\rm Repo}$.
- We have to compute it using the formula:

$$\sigma_{p} = \sqrt{\sum_{i=1}^{n} \operatorname{Prob}_{i} (r_{pi} - \mu_{p})^{2}}$$

where r_{pi} is the portfolio return (Port. %) in state *i*.

If ρ_{AB} = -1 there exists a w_A, w_B mix such that $\sigma_p = 0$

■ If $\rho_{AB} = -1$, we can easily verify that $\sigma_p = 0$ when $w_A = 2/3$, $w_B = 1/3$. $\mu_p = w_A \mu_A + w_B \mu_B$ $= \frac{2}{3}(0.1) + \frac{1}{3}(0.16) = 0.12 = 12.0\%$ $\sigma_p = w_A \sigma_A - w_B \sigma_B$ $= \frac{2}{3}(0.2) - \frac{1}{3}(0.4) = 0$

Summary of	(μ_p, σ_p)
if $\rho_{\rm AB}$ = 1.0, $\rho_{\rm AB}$ = 0.4	and ρ_{AB} = -1.0

■ The table below summarizes (μ_p, σ_p) of the 3 cases at $w_A = 0.3$ and $w_B = 0.7$

	ρ_{AB} = 1.0	$\rho_{AB} = 0.4$	$\rho_{\rm AB}$ = -1.0
μ_p	14.2%	14.2%	14.2%
σ_{p}	34.0%	30.89%	22%

■ Note that μ_p is the same for all cases but σ_p decreases as $\rho_{\rm AB}$ decreases.

Summary

Diversification works because:

■ The expected return of a portfolio (µ_p) is the weighted average of the expected returns of the assets in it.

$$\mu_{\rm p}$$
 = W_A $\mu_{\rm A}$ + W_B $\mu_{\rm B}$

The standard deviation of a portfolio (σ_p) is generally less than the weighted average of the standard deviation of returns of the assets in it.

$$\sigma_{\rm p} \leq W_{\rm A} \sigma_{\rm A} + W_{\rm B} \sigma_{\rm B}$$

If $\rho_{AB} = 1$, $\sigma_p = w_A \sigma_A + w_B \sigma_B$ (no risk reduction)

Summary

Defining and measuring risk

- Risk can be decomposed into two parts:
 - Risk that can be diversified away by investors
 - Risk that cannot be diversified away.
- Risk does not "add up".
 - By combining a careful selection of assets, different risks neutralize each other.
 - Risk reduction is more effective if correlation of returns between assets is small.

Expe	cted Po	rtfolio I	Return	$\mu_{ m p}$
	Estimated Return			
<u>Economy</u>	<u>Prob.</u>	<u>HT %</u>	Repo %	Port. %
Recession	0.10	-22.0	28.0	0.08
Below avg.	0.20	-2.0	14.7	0.08
Average	0.40	20.0	0.0	0.08
Above avg.	0.20	35.0	-10.0	0.08
Boom	0.10	50.0	-20.0	0.08
mean =		0.174	0.0174	0.08
variance =		0.0401	0.0179	0.00
s.d. =		0.2004	0.1336	0.00

