















#### <u>Ch 2 -</u> 9

### The Idea of Compounding

| After 1 year:  | $FV_1 = PV + INT_1$                       |
|----------------|-------------------------------------------|
|                | $= PV + PV \times i$                      |
|                | = PV x $(1 + i)$                          |
|                | = \$100 x (1.10) $=$ \$110.00.            |
| After 2 years: | $FV_2 = FV_1 \times (1+i)$                |
|                | $= PV \mathbf{x} (1+i)^2$                 |
|                | = \$100 x (1.10) <sup>2</sup> = \$121.00. |
| After 3 years: | $FV_3 = FV_2 \times (1+i)$                |
|                | $= PV \times (1 + i)^3$                   |
|                | = \$100 x (1.10) <sup>3</sup> = \$133.10. |
|                |                                           |

















### FV with Semi-annual Compounding

In this case, 
$$P = 100$$
,  $i = 10\%$ ,  $m = 2$ ,  $n = 3$   
 $FV = P \ge (1 + i/m)^{mn}$   
 $= 100 \ge (1 + 0.1/2)^{2\times 3}$   
 $= 100 \ge 1.05^{6}$   
 $= 100 \ge 1.34009$   
 $= 134.01$ 









| PV = 100          | Annual                 | Qtrly                    | Mthly                    |
|-------------------|------------------------|--------------------------|--------------------------|
| APR=6%            | (m=1)                  | (m=4)                    | (m=12)                   |
| FV <sub>5</sub> = | 100(1.06) <sup>5</sup> | 100(1.015 <sup>)20</sup> | 100(1.005 <sup>)60</sup> |
|                   | = \$133.82             | = \$134.68               | = \$134.89               |
| The FV o          | f a lump su            | m will be larg           | jer if interes           |
| is compo-         | unded more             | e frequently b           | because                  |
| interest is       | earned on              | interest mor             | e often.                 |





Ch 2 - 25

# What if interest is compounded semi-annually?

\$100(1 + i/2)<sup>3x2</sup> = \$125.97 (1 + i/2)<sup>6</sup> = \$1.2597 1 + i/2 = (1.2597)<sup>1/6</sup> 1 + i/2 = 1.039229 i = 2 x 0.039229 i = 7.845% ← this is an annual rate If interest is compounded more frequently, the interest rate needed for \$100 to grow to \$125.97 in 3 years will be <u>lower</u>.



















































<u>Ch 2 - 51</u>

#### PV of Annuity (By Formula)

What is the PV of \$100 at the end of each of the next 3 years, if the opportunity cost is 10%?

$$PV_{A} = PMT\left(\frac{1}{i} - \frac{1}{i(1+i)^{n}}\right)$$
$$= 100\left(\frac{1}{0.1} - \frac{1}{0.1(1+0.1)^{3}}\right) = 248.69$$









|                                                                                                                              |            |                 |                   |              | Ch 2 - 5          | 6 |  |
|------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|-------------------|--------------|-------------------|---|--|
| YR                                                                                                                           | BEG<br>BAL | ANNUAL<br>PMT   | INT<br>PMT        | PRIN<br>PMT  | END<br>BAL        |   |  |
| 1                                                                                                                            | \$1,000    | \$402           | <sup>\$</sup> 100 | \$302        | <sup>\$</sup> 698 |   |  |
| 2                                                                                                                            | 698        | 402             | 70                | 332          | 366               |   |  |
| 3                                                                                                                            | 366        | 402             | 37                | 366          | 0                 |   |  |
| TOT                                                                                                                          |            | <u>1,206.34</u> | 206.34            | <u>1,000</u> |                   |   |  |
| Check: $PV = \frac{402.11}{1.1} + \frac{402.11}{(1.1)^2} + \frac{402.11}{(1.1)^3}$<br>= 365.55 + 332.32 + 302.11<br>= 999.98 |            |                 |                   |              |                   |   |  |



















































### or Effective Percentage (EFF%)

- The "finance charge rate" of a typical credit card in HK is around 24% APR. This quoted rate is a *nominal rate*.
- Since interest (or finance) charges on the account balance is computed on a monthly basis, the *periodic rate* is 24%/12 = 2% per month.
- What is the EFFECTIVE annual rate of the finance charge on the credit card?



Ch 2 - 83

## What is the EAR of a 24% nominal rate, compounded monthly?

Back to our credit card finance charge example:

EAR = 
$$\left(1 + \frac{i_{Nom}}{m}\right)^m - 1$$
  
=  $\left(1 + \frac{0.24}{12}\right)^2 - 1$   
=  $1.02^{12} - 1$   
=  $0.2682$   
=  $26.82\%$ 





